If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2+20y-25=0
a = 15; b = 20; c = -25;
Δ = b2-4ac
Δ = 202-4·15·(-25)
Δ = 1900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1900}=\sqrt{100*19}=\sqrt{100}*\sqrt{19}=10\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{19}}{2*15}=\frac{-20-10\sqrt{19}}{30} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{19}}{2*15}=\frac{-20+10\sqrt{19}}{30} $
| 9x^2-108x-702=0 | | 7n+12=n=6 | | 5w-2w=39w | | -31(x-77)=16(x+64) | | 7x+20+3x+40=360 | | .625x+.375(5-x)=5 | | 8x+4=5x+23 | | g^2=4g-32=0 | | 3^2x+1=68 | | 44x+2+50x-16=180 | | 8x-121=3x-26 | | 13+2x=5(10-7x0 | | -8x+9+6x=-2+14 | | 3k-11=34 | | 2c-18=28 | | 5/6b=1.875 | | 3a-45=57 | | 8y-40=-8 | | 8-9x=12x-17 | | A=33,000(1+0.249/6)^6x1 | | 3x-55=x+10 | | -6.4x+1.1=-26.5-1.8x | | 6t-4t-9=0 | | 3(x+3)=5x-5 | | 16^2x^+1=128 | | 12(8x-8)=4x-6 | | 28-4=3y | | 17r+8=-16+19r | | 7(3+4/x)=12 | | -1=4(s-17)-13 | | 5x-7-6(x+1)=-6x-2 | | 4(b+3)=16 |